Bibliography

[20117]

From pairwise comparisons to ranking - python. https://datascience.stackexchange.com/questions/18828/from-pairwise-comparisons-to-ranking-python, 2017. Accessed: 2021-11-30.

[Agr19]

A. Agresti. An Introduction to Categorical Data Analysis. Wiley, 2019.

[Bec18]

A. Becker. Kalmanfilter.net. https://www.kalmanfilter.net/default.aspx, 2018. Accessed: 2020-12-31.

[GVR11]

L. El Ghaoui, V. Viallon, and T. Rabbani. Safe feature elimination for the lasso and sparse supervised learning problems. 2011. arXiv:1009.4219.

[Gue08]

C. Guestrin. Kalman filters gaussian mns. http://www.cs.cmu.edu/ guestrin/Class/10708/slides/gaussians-kf.pdf, 2008. Accessed: 2020-12-23.

[Jor10]

M.I. Jordan. The multivariate gaussian. https://people.eecs.berkeley.edu/ jordan/courses/260-spring10/other-readings/chapter13.pdf, 2010. Accessed: 2020-12-23.

[Kol09]

D. Koller. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.

[LM12]

A.N. Langville and C.D. Meyer. The Science of Rating and Ranking, Who's #1? Princeton University Press, 2012.

[May18]

L. Maystre. Choix. https://choix.lum.li/en/latest/index.html, 2018. Accessed: 2021-11-30.

[MIT14]

MIT. Gaussian graphical models. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-438-algorithms-for-inference-fall-2014/lecture-notes/MIT6_438F14_Lec6.pdf, 2014. Accessed: 2020-12-23.

[Mur12]

K.P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[Ros]

D.S. Rosenberg. The multivariate gaussian distribution. https://davidrosenberg.github.io/mlcourse/in-prep/multivariate-gaussian.pdf. Accessed: 2020-12-23.

[SL11]

T.B. Schon and F. Lindsten. Manipulating the multivariate gaussian density. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-438-algorithms-for-inference-fall-2014/lecture-notes/MIT6_438F14_Lec6.pdf, 2011. Accessed: 2020-12-23.

[Sri19]

S. Srihari. Multivariate gaussians. https://cedar.buffalo.edu/ srihari/CSE674/Chap7/7.1-MultiGauss.pdf, 2019. Accessed: 2020-12-23.

[TBF+12]

R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R.J. Tibshirani. Strong rules for discarding predictors in lasso-type problems. J.R. Statist. Soc. B, 74:1–22, 2012.