Data Science Topics Logo
0.0.1

General

  • 1. Missing Data
  • 2. Principal Component Analysis
  • 3. Principal Component Analysis - Iris
  • 4. Dimension Reduction or Concept Learning?
  • 5. Latent Dirichlet Allocation
  • 6. Conditional Multivariate Normal Distribution
  • 7. Conditional Bivariate Gaussians
  • 8. Conditional Multivariate Gaussian, In Depth
  • 9. Entropy and Mutual Information
  • 10. Mutual Information for Gaussian Variables
  • 11. Conditional Mutual Information for Gaussian Variables
  • 12. Partial Correlation
  • 13. Precision-Recall and Receiver Operating Characteristic Curves
  • 14. Kalman Filter, I
  • 15. Kalman Filter, II
  • 16. Gaussian Hidden Markov Models
  • 17. Iterative Proportional Fitting
  • 18. Iterative Proportional Fitting, Higher Dimensions
  • 19. One-Way ANOVA
  • 20. Optimizing a Function
  • 21. Brier Score
  • 22. Log Loss
  • 23. Spherical Payoff
  • 24. Proper Scoring Rules and Model Calibration

Distributions

  • 1. Generating Normally Distributed Values
  • 2. Kullback-Leibler Divergence
  • 3. Dirichlet-Multinomial Distribution
  • 4. Schedule Risk Analysis Distributions
  • 5. Gaussian Mixture Models
  • 6. Dirichlet and Guassian Mixture Models
  • 7. Data Discretization and Gaussian Mixture Models
  • 8. K-means, BIC, AIC
  • 9. PDFs and CDFs
  • 10. s-curves
  • 11. Markov Chain, Stationary Distribution

Regression

  • 1. Correlation vs Regression Coefficient
  • 2. Regression Errors
  • 3. Psuedo r-squared for logistic regression
  • 4. McFadden’s Psuedo R^2
  • 5. Logistic Regression and Naive Bayes
  • 6. Estimating Standard Error and Significance of Regression Coefficients
  • 7. Logistic Regression on Probabilities
  • 8. Safe and Strong Screening for Generalized LASSO
  • 9. Log-linear Models for Three-way Tables
  • 10. Log-Linear Models and Graphical Models
  • 11. Linear Mixed Model
  • 12. Iteratively Reweighted Least Squares Regression
  • 13. Linear Mixed-Effect Regression

Survival Analysis

  • 1. Survival Analysis Functions
  • 2. Multivariate Survival Analysis

Rating and Ranking

  • 1. Bradley-Terry-Luce Model
  • 2. Massey’s Method
  • 3. Massey’s Method, Offense and Defense
  • 4. Colley’s Method
  • 5. Keener’s Method
  • 6. Markov Method
  • 7. Reordering Method

Gradient Descent

  • 1. Gradient descent
  • 2. Regression, Gradient Descent
  • 3. Logistic Regression, Gradient Descent
  • 4. Poisson Regression, Gradient Descent
  • 5. Neural Networks, Gradient Descent
  • 6. Stochastic Gradient Descent for Online Learning
  • 7. Differentiation and Gradient

Natural Language Processing

  • 1. Latent Semantic Analysis
  • 2. Topic Modeling with Gensim
  • 3. Classification with GPT/Ollama Embeddings

Deep Learning

  • 1. Artificial Neural Network
  • 2. Restricted Boltzmann Machine
  • 3. Recurrent Neural Network (RNN), Classification
  • 4. Pose Estimation
  • 5. Outlier Detection with Autoencoders
  • 6. Data Imputation with Autoencoders
  • 7. Autoencoders, Detecting Malicious URLs

COVID-19

  • 1. COVID Hubei Data
  • 2. Differential Diagnosis of COVID-19 with Bayesian Belief Networks

Chernoff Faces

  • 1. Chernoff Faces
  • 2. Chernoff Faces, Deep Learning
  • 3. Chernoff Faces, Classification
  • 4. Chernoff Faces, Inception v3

Causality

  • 1. Simpson’s Paradox
  • 2. d-separation, Active Paths
  • 3. d-separation, Graph Transformation
  • 4. Backdoor Criterion
  • 5. Frontdoor/Backdoor Adjustment Formulas
  • 6. Generating Random Bayesian Network
  • 7. Creating a Junction Tree
  • 8. Inference in Gaussian Networks
  • 9. Causal Inference
  • 10. Dynamic Bayesian Network, Markov Chain
  • 11. Dynamic Bayesian Networks, Hidden Markov Models
  • 12. Propensity Score Matching
  • 13. Estimating Conditional Probabilities
  • 14. Explanation vs Prediction
  • 15. Explanation vs Prediction, Imbalanced Data
  • 16. Frisch-Waugh-Lowell Theorem
  • 17. Pearl Causal Hierarchy

Retail

  • 1. Pricing Elasticity of Demand
  • 2. Pricing Elasticity of Demand Modeling
  • 3. Optimizing Marginal Revenue from the Demand Curve
  • 4. Optimizing Marginal Revenue from the Demand Curve, Kaggle
  • 5. Multi-Objective Optimization for Demand Curve
  • 6. Demand Curve Fitting
  • 7. Modeling Non-linear Pricing Elasiticity

References

  • Bibliography
Data Science Topics
  • Search


© Copyright 2019, One-Off Coder. Last updated on Apr 03, 2024, 4:35:01 PM.